12 research outputs found

    Image classification over unknown and anomalous domains

    Get PDF
    A longstanding goal in computer vision research is to develop methods that are simultaneously applicable to a broad range of prediction problems. In contrast to this, models often perform best when they are specialized to some task or data type. This thesis investigates the challenges of learning models that generalize well over multiple unknown or anomalous modes and domains in data, and presents new solutions for learning robustly in this setting. Initial investigations focus on normalization for distributions that contain multiple sources (e.g. images in different styles like cartoons or photos). Experiments demonstrate the extent to which existing modules, batch normalization in particular, struggle with such heterogeneous data, and a new solution is proposed that can better handle data from multiple visual modes, using differing sample statistics for each. While ideas to counter the overspecialization of models have been formulated in sub-disciplines of transfer learning, e.g. multi-domain and multi-task learning, these usually rely on the existence of meta information, such as task or domain labels. Relaxing this assumption gives rise to a new transfer learning setting, called latent domain learning in this thesis, in which training and inference are carried out over data from multiple visual domains, without domain-level annotations. Customized solutions are required for this, as the performance of standard models degrades: a new data augmentation technique that interpolates between latent domains in an unsupervised way is presented, alongside a dedicated module that sparsely accounts for hidden domains in data, without requiring domain labels to do so. In addition, the thesis studies the problem of classifying previously unseen or anomalous modes in data, a fundamental problem in one-class learning, and anomaly detection in particular. While recent ideas have been focused on developing self-supervised solutions for the one-class setting, in this thesis new methods based on transfer learning are formulated. Extensive experimental evidence demonstrates that a transfer-based perspective benefits new problems that have recently been proposed in anomaly detection literature, in particular challenging semantic detection tasks

    Mode Normalization

    Get PDF
    Normalization methods are a central building block in the deep learning toolbox. They accelerate and stabilize training, while decreasing the dependence on manually tuned learning rate schedules. When learning from multi-modal distributions, the effectiveness of batch normalization (BN), arguably the most prominent normalization method, is reduced. As a remedy, we propose a more flexible approach: by extending the normalization to more than a single mean and variance, we detect modes of data on-the-fly, jointly normalizing samples that share common features. We demonstrate that our method outperforms BN and other widely used normalization techniques in several experiments, including single and multi-task datasets

    Fitness landscapes and evolutionary accessibility: The effect of downhill steps

    Get PDF
    Evolutionary accessibility quantifies the likelihood of reaching favorable states within fitness landscapes — mappings from genotypes to their fitness. In the traditional setting, the combinatorics of permitted trajectories obey strict monotony constraints, which are partially lifted in this work

    Intermittent treatment of severe influenza

    No full text
    Severe, long-lasting influenza infections are often caused by new strains of the virus. The long duration of these infections leads to an increased opportunity for the emergence of drug resistant mutants. This is particularly problematic since for new strains there is often no vaccine, so drug treatment is the first line of defense. One strategy for trying to minimize drug resistance is to apply drugs periodically. During treatment phases the wild-type virus decreases, but resistant virus might increase; when there is no treatment, wild-type virus will hopefully out-compete the resistant virus, driving down the number of resistant virus. A stochastic model of severe influenza is combined with a model of drug resistance to simulate long-lasting infections and intermittent treatment with two types of antivirals: neuraminidase inhibitors, which block release of virions; and adamantanes, which block replication of virions. Each drug's ability to reduce emergence of drug resistant mutants is investigated. We find that cell regeneration is required for successful implementation of intermittent treatment and that the optimal cycling parameters change with regeneration rate. (C) 2018 Elsevier Ltd. All rights reserved

    Gabriela Lucas Deecke: Lideres de la ruralidad

    No full text
    Participantes: Katiuscia Sotomayor, representante IICA Gabriela Lucas, fundadora y directora general del Centro de Innovación de Agricultura Sostenible en Pequeña EscalaLa ingeniera agrónoma mexicana Gabriela Lucas Deecke, fundadora y directora general del Centro de Innovación de Agricultura Sostenible en Pequeña Escala (CIASPE), una organización diseñada para fortalecer capacidades de autogestión y resiliencia de los pequeños productores con foco en las mujeres, recibirá el premio “El Alma de la Ruralidad”, que el Instituto Interamericano de Cooperación para la Agricultura (IICA) otorga a Líderes de la Ruralidad de las Américas
    corecore